Heterogeneous
Programming
Library

Heterogeneous Programming Library

Programming Manual

HPL TeEAM
August 23, 2015

Contents

1 Introduction

2 Installation

2.1 Installation based on cmake,
2.2 Installation based on Makefiles
2.3 Basic test: compiling with HPL
2.4 Environment setup for runtime optimizations

3 Hardware and Programming Model

4 Programming Interface
4.1 Arrays .. o. .. e e
4.1.1 Methods e
4.1.2 Host side Array usage optimization
4.1.3 Arraysofstructs Lo
4.1.4 ALasATTayso e e e e
4.2 Kernel interface
4.2.1 HPL automatic variables
4.2.2 Control flow macros
4.2.3 Generic functions
4.2.4 Arithmetic functions
4.2.5 Atomic functions
4.3 Host interface e
4.3.1 Device management
4.3.2 Kernel execution
4.3.3 Using native kernels Lo oo
434 Profiling
Appendices

A Library compile time flags and environment variables
B Runtime variables

C cIBLAS integration

10
10
11
12
13
13
14
14
14
15
17
17
18
18
19
20
21

23

23

24

25

1 Introduction

The Heterogeneous Programming Library (HPL) provides a programming environment
for C++ whose aim is to maximize the programmability of heterogeneous systems while
allowing low level control and performance similar to that of lower level approaches. The
library is built on two key concepts:

- Arrays : special datatypes that can be used both in the main program, that is executed
in a regular CPU, and in the code that runs in the heterogeneous devices.

- Kernels : functions that can run in any device. They can be written

e in a language embedded in C++ provided by HPL. The library translates these
kernels to OpenCL, enabling the execution in a wide range of devices. This
language is extremely similar to regular C4++ and it is defined in Sect. 4.2.

e in regular OpenCL C. The procedure to use standard OpenCL kernels is ex-
plained in Sect. 4.3.3.

Users should define the data that they want to use in the kernels as Arrays. These
Arrays can then be used as arguments in the host invocations to the kernel functions. This
can be seen in Fig. 1, which shows the full code needed in HPL to execute the SAXPY
function Y = X + Y in an accelerator, where X and Y are vector and « is a scalar.

1 #include "HPL.h"
2
3 using namespace HPL;
4
5 wvoid saxpy(Array<float,1> y, Array<float,1> x, Float alpha)
6 {
7 y[idx] = alpha * x[idx] + y[idx];
8 }
9
10 int main(int argc, char *xxargv)
11 { Array<float, 1> x(1000), y(1000);
12 float alpha;
13
14 for(int i = 0; 1 < 1000; i++) {
15 x(i) = ..
16 y(i) = ..
17 }
18
19 eval(saxpy)(y, x, alpha);
20 }

Figure 1: SAXPY code in HPL

This code follows these steps:

1. We begin including the header file for HPL in line 1 and declaring the usage of its
namespace in line 3.

6.

. We then write the saxpy kernel in lines 5-8. The kernel takes as arguments two

1-dimensional Arrays (i.e., vectors) of elements of type float called y and x and a
single-precision scalar called alpha. A scalar variable can be defined in HPL using
an Array of 0 dimensions (e.g. Array<float,0>), or convenient alias such as Float.

The computation of the kernel is specified in line 7. HPL kernels use predefined
variables to identify each parallel thread that runs a kernel, the number of threads
in each dimension and other important properties. For example, idx is a predefined
variable that identifies the thread that is running the current instance of the kernel
in the first dimension of the problem domain. This way, line 7 specifies that the
idx-th thread will compute y[idx] following the SAXPY algorithm.

. The Arrays that the host program wants to use in the kernel are defined in line 11.

Scalars do not need to be defined using the HPL datatypes, so the alpha variable
in the host side can be a regular float.

The host code initialized the data of its Arrays in lines 15 and 16. Notice that host
code must access Arrays using parenthesis (lines 15-16) while kernel must access
them using brackets (line 7).

Finally, we run our saxpy kernel on our arrays using the syntax shown in line 19.

The rest of this document is organized as follows. First, Section 2 explains how to
install HPL. Then, Section 3 introduces the hardware view and the programming model
provided by HPL. The interface of the library is described in Section 4. Appendices A
and B report compilation flags and environment variables that control the compilation
and the execution of HPL programs, respectively.

2 Installation

HPL has the following requirements:
1. OpenCL 1.1 or above.
2. A a C++ compiler that supports C++11

There are two ways to install HPL:

e Based on the cmake tool'. This is the mechanism recommended for users
because it is more portable and it gives place to a streamlined installation in a
directory chosen by the user. The binaries, header files and libraries are placed in
the bin, include/hpl and 1ib subdirectories, respectively.

e Based on traditional Unix makefiles. This mechanism builds HPL inside the direc-
tory were its tarball is unpacked, leaving the header files and executables in the src
directory and the library in the 1ib directory.

Both mechanisms are now explained in turn.

2.1 Installation based on cmake

1. First, make sure that you fulfill the HPL build requirements.

2. Unpack the hpl tarball (hpl_xxx.tar.gz) and enter the just created directory:

tar -xzf hpl_xxx.tar.gz
cd hpl_xxx

3. Create the temporary directory where the project will be built and enter it:

mkdir build
cd build

4. Generate the files for building HPL in the format that you prefer (Visual Studio
projects, nmake makefiles, UNIX makefiles, Mac Xcode projects, ...) using cmake.

In this process you can use a graphical user interface for cmake such as cmake-gui
in Unix/Mac OS X or CMake-gui in Windows, or a command-line interface such as
ccmake. We will explain the process assuming this last possibility, as graphical user
interfaces are not always available.

Follow these steps:

(a) Run ccmake ..
This will generate the files for building HPL with the tool that cmake choses
by default for your platform. Flag -G can be used to specify the kind of tool
that you want to use. For example if you want to use Unix makefiles but they
are not the default in you system, run ccmake -G ’Unix Makefiles’
Run ccmake --help for additional options and details.

'Freely available for download from http://www.cmake.org

http://www.cmake.org

(b) Press letter 'c’ to configure your build.

(¢) Provide the values you wish for the variables that appear in the screen. The
most relevant ones are:

e CMAKE BUILD_TYPE : Specified the build type. Possible values are empty,
Debug, Release, RelWithDeblInfo and MinSizeRel.

e CMAKE_INSTALL PREFIX : Directory where HPL will be installed

e CLBLASDIR : If you installed cIBLAS? and you want to be able to use it
on top of HPL, provide here the home directory of its installation. It is
assumed that its headers will be found within directory include and its
libraries in directory 1ib.

(d) When you are done, press ’c’ to re-configure cmake with the new values.

(e) Press ’g’ to generate the files that will be used to build HPL and exit cmake.

5. The rest of this explanation assumes that UNIX makefiles were generated in step 4.
Run make

This builds the HPL library and its tests.

The degree of optimization, debugging information and assertions enabled depends
on the value you chose for variable CMAKE BUILD_TYPE.

Note: You can use the flag -j to speedup the building process. For example, make
-j4 will use 4 parallel processes.

6. (Optionally) run make check
This will run the HPL tests.
Notice that some tests may fail even if HPL works correctly (e.g. if they use double
precision but it is not supported by the default device chosen).

7. (Optionally) run make checkclBLAS

This will run the cIBLAS integration tests if you provided the cIBLAS related vari-
ables in the set up. Notice that some tests may fail even if HPL works correctly (e.g.
if they use double precision but it is not supported by the default device chosen).

Note: cIBLAS may require loading its dynamic libraries at runtime. Please set up
your environment (ususally by means of the environment variables LD_.LIBRARY_PATH
in Unix or DYLD_LIBRARY PATH in Mac OS X) to allow cIBLAS to find its libraries.

8. Run make install

This installs HPL under the directory you specified for the CMAKE_INSTALL DIR vari-
able. If you left it empty, the default base directories will be /usr/local in Unix
and c:/Program Files in Windows.

The installation places the binaries, header files and libraries in the bin, include/hpl
and 1ib subdirectories of the chosen directory, respectively.

9. You can remove the hpl_xxx directory generated by the unpacking of the hpl tarball.

2Freely available for download from http://github.com/clMathLibraries/c1BLAS

http://github.com/clMathLibraries/clBLAS

2.2 Installation based on Makefiles

1. First, make sure that you fulfill the HPL build requirements.

2. Unpack the hpl tarball (hpl _xxx.tar.gz) and enter the just created directory:

tar -xzf hpl_xxx.tar.gz
cd hpl_xxx

3. run ./configure
This will generate a common.mk file with a default configuration

4. edit common.mk as needed to select your desired compiler, compilation flags, location
of OpenCL libraries, etc. modifying the corresponding variables.

5. Run make
This builds the HPL library in directory 1ib and its tests in directory tests.

The library is built by default without optimization flags and with debugging infor-
mation and assertions activated.

If you define the environment variable PRODUCTION before you run make, HPL and
its tests will be compiled with optimization flags, no debugging information and no
assertions. For example, in the bash shell you can write PRODUCTION=1 make

Note: You can use the flag -j to speedup the building process. For example, make
-j4 will use 4 parallel processes.

6. (Optionally) run make check
This will run the HPL tests.
Notice that some tests may fail even if HPL works correctly (e.g. if they use double
precision but it is not supported by the default device chosen).

7. (Optionally) run make checkclBLAS

This will run the cIBLAS integration tests if you set up cIBLAS in common.mk.
Notice that some tests may fail even if HPL works correctly (e.g. if they use double
precision but it is not supported by the default device chosen).

Note: cIBLAS may require loading its dynamic libraries at runtime. Please set up

your environment (ususally by means of the environment variables LD_LIBRARY PATH

in Unix or DYLD_LIBRARY_PATH in Mac OS X) to allow cIBLAS to find its libraries.
8. (Optionally) run make clean

This removes the temporary object files generated during the build of HPL as well
as the test binaries, leaving only 1ib/1ibHPL.a

make veryclean also removes 1ib/1ibHPL.a and other internal HPL files.

2.3 Basic test: compiling with HPL

Once you have installed HPL, you can try compiling yourself any of the tests provided
with the library. If, for example, the test MatrixAdd.cpp is chosen, and you let cmake
install HPL in the default /usr/local location, this is achieved with the command

ct++ -std=c++11 -I/usr/local/include/hpl -o MatrixAdd MatrixAdd.cpp
-L/usr/local/1ib -1HPL -10penCL

assuming that OpenCL is available in the libOpenCL library. In Mac OS X the correct
flag to link with OpenCL would be -framework OpenCL.

2.4 Environment setup for runtime optimizations

HPL can apply some runtime optimizations depending on the characteristics of the system
where the application is being run. These optimizations require an analysis of the system
that is performed offline by means of a tool called PerfAdapt and is stored in a file. HPL
tries to read this file at runtime if we provide its location by means of the environment
variable HPL_CONFIG_FILE. Since PerfAdapt writes the results of it analysis as text to the
console and it must be run in each system in which we want to HPL, the correct setup
follows these steps:

1. Run PerfAdapt in each system where you expect to run HPL, accumulating the
output of all the invocations in a single file. For example, in an UNIX system this
can be achieved writing

PerfAdapt >> hpl_config file.txt

2. Set up the environment variable HPL_CONFIG_FILE to point to this file, for example
with

export HPL_CONFIG_FILE=hpl_config_file.txt

3 Hardware and Programming Model

The abstract view of the underlying hardware considered by HPL is depicted in Figure 2.
There is a host with a memory and a CPU in which the main program runs. Attached to
it, there are a number of computing devices, each one of them with its own memory and a
number of processors that can only access the memory within their device. While different
devices can run different codes, all the processors in the same device must execute the same
code in an SPMD fashion. In some devices the processors are subdivided in groups that
share a scratchpad memory of a limited size and can synchronize by means of barriers,
this being the only mechanism available to synchronize processors within a device.

Device 0

Host r |
Memory |—| Processors

CPU =

—L Device N-1

| Memory |—| Processors |

Figure 2: Underlying hardware model for HPL

Given this view, a HPL application consists of (regular) code executed in the host and
portions of code that are run in an SPMD fashion in one or several devices under the
request of the host. These parallel portions of the application are expressed as functions
that are evaluated in parallel by the processors in the selected device. These functions
are called kernels, since they are analogous to the kernels found in CUDA or OpenCL, for
example.

Each thread that runs a copy of a kernel needs a unique identifier so that it can
identify the work it is responsible for. To allow for this, kernels are executed on a domain
of integers of up to three dimensions, called a global domain. Each point in this domain
is assigned a unique identifier that is associated to an instance of the requested kernel,
and therefore the size of this domain is the total number of parallel threads running the
requested kernel.

The user can optionally specify a local domain, which must have the same number of
dimensions as the global domain and whose size in every dimension must be a divisor of the
size of the corresponding dimension of the global domain. The threads whose identifiers
belong to the same local domain can share scratchpad memory and synchronize by means
of local barriers. These threads form what we call a group of threads, each group also
having an n-dimensional identifier.

Figure 3 represents the unique global identifiers of the 32 threads to run for a global
domain of 4 x 8 threads. The identifiers of threads that belong to the same local domain
(or group) of 2 x 4 threads are surrounded by a thicker line. The unique identifier of each
thread group is also indicated.

Lastly, regarding memory, kernels can only access the processor’s registers and the
memory available inside the device where they are run. HPL distinguishes four kinds of
device memory:

Global memory : It is the standard memory of the device, which is shared by all the

| 8 threads globally | group

group

00) ! X (0.1)
(0,0) | (0,1) | (0,2) | (0,3) § (0,4) | (0,5) | (0,6) | (0,7) S

® 1,00 1 (1,1) 1 (1,2) | (1,3) §(1,4) | (1,5) | (1,6) | (1,7) g :3‘"

% %‘1 (2,00 | (2,1) | (22) | 23) § (24) | (2,5) | (2,6) | (2,7) 2= §

£8 (3,00] (3,1)] (3.2) | (3,3) | (3.4) | (3,5) | (3,6) | (3,7) @

(aV}

group I 4 threads locally I group

(1,0) (1,1)

Figure 3: Global and local domains for the threads that execute in parallel a HPL kernel

processors in the device both for reading and writing.

Local memory : This is the scratchpad memory that can be only accessed by the threads
that belong to the same local domain.

Constant memory : A memory for data that can be written by the host but which the
kernels can only read.

Private memory : A memory that is separate for each thread running a kernel, so that
only that thread can access it.

4 Programming Interface

The HPL interface is made available by the inclusion of the header file HPL.h and it is
encapsulated inside the HPL namespace in order to avoid collisions with other program
objects. The interface has three components:

e Array : a datatype to represent both scalars and n-dimensional arrays that can be
used both in the host code and in the kernels.

e Device-only interface : it is only used to write the code of the kernels.

e Host-only interface : it is only used in the host code. Its main purpose is to
identify the devices available in the system and request the execution of kernels on
them.

We now describe these elements in turn.

4.1 Arrays

Like any function, HPL kernels have parameters and private variables. Both kinds of
variables must have type Array<type, ndim [, memoryFlag/>. This is a C++ template
class where

e type is the standard C++ type of the contents. The left column in Table 1 dis-
plays the types currently supported. Arrays can also be made up of structs (see
Section 4.1.3).

e ndim is the number of dimensions of the array or 0 for scalars. The maximum
number of dimensions currently supported is three.

e memoryFlag is optional. It either specifies one of the kinds of memory supported
(Global, Local and Constant, in the order used in Section 3) or is Private, which
indicates that the variable is private to each thread in its kernel instantiation.

The default memoryFlag is Global, except for variables defined inside kernels. These
latter variables can only be either Local or Private, which is their default. Arrays
with the Local flag are shared by all the threads in a group even if they are defined
inside a kernel.

When the host code invokes a kernel, it provides the arguments for its execution, which
must also be Arrays. This way, the input and output kernel Arrays must be declared in
the host space.

l standard C types supported in Arrays ‘ HPL type for a scalar ‘

int Int
unsigned int Ulnt
size_t Size_t
float Float
double Double

Table 1: Basic types supported in Arrays

10

float v[100]{100];

Array<double, 3> mx(20, 30, 40); //20 z 30 x 40 array of doubles
Array<float, 2> vx(100, 100, v); //v provides the storage

Array<int, 1> fastv(1000, HPL_FAST_MEM); //Allocate in pinned memory
Int i; //Same as Array<int, 0> i;

Figure 4: Construction of Arrays

As Fig. 4 shows, the constructor for an n-dimensional Array takes as inputs the sizes
of its dimensions. By default the library is responsible for allocating and deallocating
the memory required to store the Array contents no matter it is defined in host code or
in a kernel. Arrays built in the host space accept in their constructor an optional final
argument whose value can be

e a pointer to a previously allocated memory region that provides the space for the ar-
ray in the host memory. If such memory is provided, HPL makes no host allocations
or deallocations for this array. Instead, the user is responsible for its deallocation.

e HPL FAST MEM, which requests that the array is allocated in the host pinned memory.
This can make the transfers between the host memory and the device faster

e HPL_NOHOST_MEM, which indicates that this array needs no host-side allocation, i.e.,
it will be only accessed in the devices.

While scalars can be defined using the Array template class with ndim=0, the conve-
nience types shown in the right column of Table 1 simplify the definition of scalars of the
obvious corresponding C++ type.

HPL also provides vector types both in the kernels and in the host code. HPL currently
supports vectors of 2, 4, 8 and 16 elements either of type int or float. The host native
type of a vector of n elements of type type is typen (e.g. float2 or int16), while the
corresponding Array type that can be used in kernels begins with uppercase (e.g. Float2
or Int16).

Both Arrays and HPL vector types are indexed with the usual square brackets in
kernels. However, their indexing in host code is made with parenthesis. This visually
emphasizes the fact that their accesses in the host code experience overheads that do not
exist in the kernels. The most important overhead is that the library tracks each access in
the host code in order to learn whether it is only read, written or both. This information
is used to minimize the number of transfers between the host and the devices using a lazy
copying policy. Section 4.1.2 describes techniques to reduce this overhead in the host code.

4.1.1 Methods

Arrays supports the following methods in the host code, but not in kernels:

e T xdata(AccessType at = HPL_RDWR) returns a raw pointer to the contents of the
Array in the host memory. The optional input flag indicates whether the follow-
ing host code will only read (HPL_RD), write (HPL_WR) or perform both operations
(HPL_RDWR) on the array through the pointer. If no flag is provided, HPL_RDWR is
assumed.

11

Array<float, 1> a(N), b(N);

Array<float, 1> a(N), b(N); /* compile with
float *pa, *pb; ~DHPL_NO_AUTOSYNC /
Array<float, 1> a(N), b(N); pa = a.data(HPL_WR); a.data(HPL_WR);
pb = b.data(HPL_RD); b.data(HPL_RD);
for(int i = 0; i < N; i++) for(int i = 0; i < N; i++4) for(int i = 0; i < N; i++)
a(i) = bi) + 1 pali] = pbfi] + 1; a(i) = b(i) + 1
(a) automated management (b) manual management (c) intermediate management

Figure 5: Usage of Arrays in host code
e void *getData(AccessType at = HPL_RDWR) same as data but the return type is
void * instead of T *.
e int getDimension(int d) return size of dimension d.

e T reduce(0P op) returns the reduction of all the values in the array using functor
op, which can be any binary functor. Not implemented in scalar Arrays.

Example: r = mx.reduce(std: :plus<float>());

adds all the elements in Array mx in destination r.

e T value() returns the value stored in a constant scalar Array<T, 0>.

e T& value() returns a reference to the value stored in a non-constant scalar Array<T, 0>.

The following methods are supported both in host code and kernels:
e size t getDataltemSize() return the size of one data item of the array.

e int getNumberOfDimensions() return number of dimensions.

4.1.2 Host side Array usage optimization

The overhead that the automated management generates in the accesses to Arrays in the
host can be reduced in two ways. Both of them involve using the Array method data
described in Section 4.1.1.

The first strategy consists in using method data to inform the system on the kind of
access, and then directly performing the accesses through the pointer obtained. Fig. 5
compares a code (a) with totally automated management with a code (b) in which the
user applies this strategy.

The second possibility consists in compiling our application with the flag ~-DHPL_NO_AUTOSYNC,
which disables the detection of the kind of access performed when an Array is accessed,
thereby strongly reducing the library overhead. Since the library cannot automatically
track the accesses, the user must use method data to provide this information. Fig. 5(c)
illustrates our example code written using this strategy.

12

HPL_DEFINE_STRUCT(mystruct_t,
{ int j;
float f;

1)

Array<mystruct_t, 2> matrix(100, 100);

Figure 6: Declaring a struct type to HPL in order to use it in Arrays

4.1.3 Arrays of structs

HPL also supports the usage of Arrays of structs. In order to allow the usage of a
struct in a HPL Array, its definition must be made known to HPL. For this purpose
HPL provides two macros that should be invoked outside any program function:

e HPL DEFINE_STRUCT (struct_name, struct_body) defines the struct and registers it
in the HPL internal system. This macro must be used in a unit of compilation that
is compiled only once, such as a . cpp file.

e HPL_DECLARE_STRUCT (struct_name, struct_body) provides a declaration of the struct
suitable to be included in header files.

A program using a given struct type in HPL Arrays must include one and only one
HPL_DEFINE_STRUCT that should only be compiled once. Additionally, the program can
include any number of HPL_DECLARE_STRUCT macros for the associate type. Fig. 6, where
mystruct_t is the name we want to give to the struct, illustrates the syntax of these
macros.

The fields of a struct are accessed using the syntax

e structVariable.at (field) inside kernels (e.g. matrix[0] [0].at (£f))

e field(structVariable, field) in host code (e.g. field(matrix(0,0), £)). Of course
it is also possible to get a pointer p to the data of the array using method data and
just apply the usual p->f notation.

4.1.4 AliasArrays

Sometimes it is useful to declare pointers to locations within existing Arrays in kernels
because this simplifies the indexing functions of these Arrays. HPL supports this pos-
sitiblity by means of the kernel-only AliasArray class template, which is simply a pointer
to a fixed position inside an Array. The only template argument to AliasArray is the
type of the elements of the underlying array. AliasArrays do not support pointer arith-
metic of dereferencing (i.e., via the * operator), but rather they are used like a normal
1-dimensional Array. Similarly, they get the position they point to in their constructor,
and it cannot be changed during the lifetime of the AliasArray.

Figure 7 illustrates the usage of AliasArrays with an example in with each thread idx
(See Section 4.2.1 and Table 2 for the meaning of this variable) builds an AliasArray ptr
that points to the beginning of the row idx of the input AliasArray matrix and then
uses it to multiply the elements in the row by 2.

13

void kernel(Array<float, 2> matrix, Int M)
{ Int i

AliasArray<float> ptr(matrix[idx][0]);
for (i=0,i<M,i++) {
ptr[i] x= 2.5
}
}

Figure 7: Example of AliasArray definition and usage.

Meaning First dimension | Second dimension | Third dimension
Global id idx idy idz
Local id lidx lidy lidz
Group id gidx gidy gidz
Global domain size SZX szy 44
Local domain size lszx lszy lszz
Number of groups ngroupsx ngroupsy ngroupsz

Table 2: Predefined HPL variables.

4.2 Kernel interface
The HPL interface used to write the code of the kernels includes

e Predefined functions to uniquely identify each thread and group of threads as well
as the dimensions of the global and the local domain.

Macros to express conditional and iterative constructs.

Generic helper functions.

Arithmetic functions.

Atomic functions.

The following sections describe these components in turn.

4.2.1 HPL automatic variables

Table 2 described the predefined variables provided by HPL in order to obtain the global
id of the thread within the global space (first row), the local id within the thread group
(second row) and the identification of the thread’s group (third row). It also provides
the size of the global domain, the local domain and the number of groups of threads per
dimension (fourth, fifth an sixth rows, respectively).

4.2.2 Control flow macros

Table 3 shows the C++ constructs supported in the HPL kenels with the correspond-
ing HPL translation. Notice that the arguments to for_ are separated by commas, not
semicolons. A convenience else_if (expr) macro is also provided.

14

C++ construction HPL construction

for(..; ;o) { .o } for_(coy vy o) { oo }
if(exp) { ... } f (exp) { ... }

if(exp) { ... }else{ .. } | if_(exp) { ... } else_{ .. }
return; return_();

return(exp) ; return_(exp);

while(exp) { ... } while_(exp) { ... }

Table 3: Correspondence between C++ and HPL constructs

Older versions of HPL required marks at the end of the blocks of code (endif _, endfor_

and endwhile_) which were interchangeable and equivalent, and any of them could be
replaced with the generic keyword end_. Now these marks are deprecated since they are
no longer needed.

4.2.3 Generic functions

e barrier(Sync_t flag) performs a barrier synchronization between the threads in a
group. The flag indicates wheter a consistent view of the local memory, the global
memory or both is needed after the barrier, the corresponding values being LOCAL,
GLOBAL and LOCAL |GLOBAL, respectively.

call(£f) (...) invoke function f, which must be written in HPL, using the arguments
specified.

cast<T>(expr) casts the result of the evaluation of expression expr to the type T.

Example: call(ftr)(a,b,c);

invokes HPL function ftr with arguments a, b and c.

reduce(dest, input, op) is a cooperative function run by all the threads in a
group. It reduces into destination dest the input value provided by each thread of
the group using the operation op, which is provided as a regular C string ("max",
"+ ...). Only the thread 0 of the group writes the result to the destination.

Example: reduce(v[gidx], f, "max");

stores into v[gidx] the maximum f among all the threads in the group.

Optional modifiers that can allow to optimize the implementation:

— ndims(n) : the kernel will be run using n-dimensional thread domains.
— groupSize(n) : the kernel will be using thread groups of n threads.

— minGroupSize(n) : the kernel will be using thread groups of at least n threads.

localMem(n) : use at most n items of the same type as dest and input in the
local memory to perform the reduction.

15

— toAl11() : all the threads, rather than only thread 0, must write the reduction
result to dest.

— inTree() : perform the reduction of the local array as a parallel binary tree.
Otherwise it is made sequentially.

— unroll(b) : boolean that indicates whether loops should be unrolled or not.
As of now it only applies to the binary reduction and defaults to true.

— syncReq(n) : request to generate synchronizations only when n or more threads
are involved in a part of the algorithm. This is useful when we know the code is
going to be run in devices where a given number of threads operate in lockstep,
so that their synchronization is ensured.

— nElems(n) : the reduction will take n consecutive elements from the memory
position of the input of each thread and reduce the corresponding elements,
giving place to a final vector of n elements which will be stored beginning at
the address of the destination.

— nTeams (n) : the threads in each group will be divided in n teams of consecutive
threads according to their id. Each team will cooperate in a different reduction.

Example: reduce(r, v[idx], "*").ndims(1) .minGroupSize(32).toAll();

multiply the v[idx] values provided by all the threads in a group. All of them
store the outcome in r. The code is generated knowing that this is a one-
dimensional problem in which the minimum number of threads in a group will
be 32.

Example: reduce(r, v[idx], "+").nTeams(4).groupSize(128).inTree().
syncReq(33) .toAl11();

each group of threads has 128 threads, and they are organized in four teams
(threads 0 to 31, 32 to 63, 64 to 95 and 96 to 127). The threads in each team
reduce the value they provide in v[idx] by adding it, and all of them get the
result in variable r. The reduction is made in binary tree in a device that only
requires explicit synchronizations between threads in steps in which 33 or more
threads have to cooperate.

Example: reduce(r[N*xgidx], q[0], "+").groupSize(32) .nElems(10);

in a group of 32 threads, all of them will add their q[0] to generate r [N*gidx],
their q[1] to generate r [N*gidx+1], and so on up to q[9], whose addition will
be stored in r [N*gidx+9].

e where(a, b, c) corresponds to the C construction (a) ? (b) : (c)

16

4.2.4 Arithmetic functions

Besides the usual +, -, *, /, 1.~ %, &, |, =, &&, |1, <, >, ==, <=, >=, |=, << and
>> operators, the following functions are currently available:

® acos e ceil e fabs e native_rsqrt e tanh

e acosh ® cos e floor e native_sqrt e tanpi

e acospi e cosh e ilogb e rint e tgamma

e asin e cospi e lgamma e round e trunc

e asinh e erfc e log e rsqrt e dot

e asinpi o erf e log2 e sin ® max

e atan ® exp e logl0 e sinh e native_divide
e atanh e exp2 e loglp e sinpi ® pow

e atanpi e expl0 e logb e sqgrt

e cbrt e expml e nan e tan

4.2.5 Atomic functions

In all these functions var is the name of a memory position of underlying type int or
unsigned int. This way, it can be either an Int or UInt scalar variable or an element of
an Array of int or unsigned int. As for val, it is an expression of the same underlying
type as var.

e atomic_add(var, val) atomically adds value val to variable var. The old value of
var is returned.

e atomic_and(var, val) atomically performs the bitwise and of the value val and
variable var and stores the result in var. The old value of var is returned.

e atomic_cmpxchg(var, cmp, val) atomically compares var with cmp, changing the
value of var to val if they are equal, and leaving it unchanged otherwise. The old
value of var is returned.

e atomic_dec(var) atomically decrements integer variable var. The old value of var
is returned.

e atomic_inc(var) atomically increments integer variable var. The old value of var
is returned.

e atomic max(var, val) atomically computes the maximum of variable var and the
value var and stores the result in var. The old value of var is returned.

e atomicmin(var, val) atomically computes the minimum of variable var and the
value var and stores the result in var. The old value of var is returned.

17

Type Meaning Values Description
. . . CPU General purpose CPU
Device_t Type of physical device GPU Programmable GPU
AMD AMD OpenCL
APPLE Apple OpenCL
Platform_t Type of backend INTEL Intel OpenCL
NVIDIA Nvidia OpenCL

Table 4: Enumerated types associated to kinds of supported devices and backends

e atomic_or(var, val) atomically performs the bitwise or of the value val and vari-
able var and stores the result in var. The old value of var is returned.

e atomic_sub(var, val) atomically subtracts value val from variable var. The old
value of var is returned.

e atomic_xchg(var, val) atomically swaps the old value of variable var with the
new value val. The old value of var is returned.

e atomic _xor(var, val) atomically performs the bitwise xor of the value val and
variable var and stores the result in var. The old value of var is returned.

4.3 Host interface

The HPL interface for the host application includes mechanisms to
e discover the devices available in the system and their attributes.
e request the execution of kernels on the devices.

The following sections describe these components in turn.

4.3.1 Device management

HPL can provide access to different kinds of devices and on top of different backend
platforms. This way, HPL provides the enumeration types Device_t and Platform_t to
refer to the kinds of hardware devices it can give access to, and the backends on top of
which it can access them. Table 4 describes these two types and the values they can
take. The user can learn the number of specific devices found in the system through the
functions

e unsigned int getDeviceNumber(Device_t type_id) returns the number of de-
vices of type type_id.

e unsigned int getDeviceNumber (Platform_t platform_id, Device_t type_id) re-

turns the number of devices of type type_id that can be accessed on top of platform
platform_id.

The class used to refer to a specific device is called Device. It has the following
constructors and methods:

18

Device() (default constructor) refers to the first GPU in the systems, or if not
available, to the first CPU in the system. If there are several platforms that can
support the chosen device, it chooses the one provided by the vendor if available,
otherwise any can be chosen.

Device(Device_t type_id, int n = 0) refers to the n-th device of type type_id
available in the system. If no number is provided, it refers to the first one (n= 0).
The platform is chosen using the same algorithm as in the default constructor.

Device(Platform t platform id, Device_t type_id, int n = 0) refers to the
n-th device of type type_id available on top of platform platform id in the system.
If no number is provided, it refers to the first one (n= 0).

sync () waits for all pending taks on the device to finish.

getProperties(DeviceProperties& dp) obtains the properties of the device in dp.

4.3.2 Kernel execution

In order to run a kernel written in a function £ with a list of arguments arg0, argl, ...,
the user must write in the host code eval(f) (arg0, argl, ...). The execution will
take place in the device chosen by default by the library (see Section 4.3.1) using a global
domain with the number of dimensions and sizes of the first argument of the evaluation
(arg0) and a local domain chosen by the library. The device to use and the size of the
global and the local domains, can be controlled using these methods to eval:

device(Device d) run the kernel in the device d.

device(Device_t type_id, int n = 0) run the kernel in the device built by
Device: :Device(type_id, n).

device(Platform_t platform_id, Device_t type_id, int n = 0) run the ker-
nel in the device given by Device: :Device(platform_id, type_id, n)

global (unsigned int x) run the kernel using a 1-D global domain of size x.

global (unsigned int x, unsigned int y) run the kernel using a 2-D global do-
main of size xxy.

global (unsigned int x, unsigned int y, unsigned int z) run the kernel us-
ing a 3-D global domain of size xxXyxz.

global (Domain d) run the kernel using the global domain specified by d.
local(unsigned int x) run the kernel using a 1-D local domain of size x.

local(unsigned int x, unsigned int y) run the kernel using a 2-D local domain
of size xxy.

local(unsigned int x, unsigned int y, unsigned int z) run the kernel us-
ing a 3-D local domain of size xxyXxz.

local(Domain d) run the kernel using the local domain specified by 4.

19

FRunner r = eval(f).device(d).global(gx,gy)

for(int i = 0; 1 < N; 4++i) Jocal(lx,ly)(a,b,c);
eval(f).device(d).global(gx,gy) for(int i = 1;1 < N; ++i)
Jocal(Ix,ly) (a,b,c); r.run();
(a) Loop with eval() (b) Loop with run()

Figure 8: Usage of run() method

Example: eval(f).device(d).global(3200,3200).1local(32,32)(a,b,c);

runs the HPL kernel in function f in the device d using a global domain of 3200 x 3200
threads decomposed in groups of 32 x 32 threads, using the arguments a, b and c.

The Domain class mentioned above is a helper that allow to define 1-D, 2-D and 3-D
domains with the simple syntax Domain(a), Domain(a,b) and Domain(a,b,c), respec-
tively.

Example: eval (mykernel) .device(GPU, 0).global(Domain(1024,1024)) (a,b);

runs the HPL kernel in function mykernel in the first GPU found in the system using a
global domain of 1024 x 1024 threads using the arguments a and b and a local domain
chosen by the library.

Advanced kernel execution: In order to accelerate the execution of a kernel in a
loop, the user can avoid the repetitive setting of buffers or the dimensions of the problem
using the method run() onto the object returned by eval(), which has type FRunner
(see Figure 8). The run() method is called in a loop body and onto an object whose
configuration was set previously outside of the loop. The behavior of the run() is exactly
the same that eval () from the programmer point of view but it does not perform as many
checks as this one.

4.3.3 Using native kernels

HPL allows to run kernels defined as strings in OpenCL C. For this purpose, the user
must provide the kernel name, a string with its definition and code, and finally a function
that describes the type and the purpose (input, output or both) of each argument to the
kernel by means of its list of parameters. This function is used as handle for the native
in the eval () invocations, and its body is disregarded. The function parameters must be
Arrays of the appropriate number of dimensions, just as in any HPL kernel. By default an
argument will be considered as both input and output to the kernel. In order to indicate
the purpose for an input of type T, the formal parameter will be of type:

e In<T>: the argument is only an input.

e Qut<T>: the argument is only an output.

20

1 // Native OpenCL C kernel string

2 const char x const kernel code = TOSTRING(

3 _kernel void mxmul_simple(__global float *a, __global float *b,
4 __global float *c, const int n)
5 {int i, j, m, p, k;

6 float f = 0.;

7 m = get_global_size(0);

8 p = get_global_size(1);

9 i = get_global_id(0);
10 j = get_global id(1);
11 ifi <m&&j<p){
12 for(k = 0; k < n; k++)
13 f += a[i*n+k] * b[kxp+jl;
14 clixp+j] = £
15 }
16 });
17
18 // Define function that specifies the type of each kernel argument

19 void matmulGPU(In< Array<float, 2> > a,

20 In< Array<float, 2> > b,

21 Out< Array<float, 2> > c,
22 Int n)

23 {}

24

25 // Associate handle with kernel name and its string
26 nativeHandle(matmulGPU, "mxmul_simple", kernel _code);
27

28 int m, n, p;

29 Array<float, 2> a(m, n), b(n, p), c(m, p);

30

31 // Ready to use by means of its handle funcion!

32 eval(matmulGPU).global(m, p)(a, b, c, n);

Figure 9: Example of usage of a native kernel

e InOut<T>: the argument is an input and an output.

Before the first time the function handle is used in an HPL evaluation it must be associ-
ated to the native kernel by means of function void nativeHandle(f, name, native_code)
where f is the C++ function that represents the kernel and provides the information on its
parameters, name is the kernel name and native_code contains the kernel code. Figure 9
illustrates how to use a native OpenCL code for matrix multiplication.

A convenient macro TOSTRING that turns into a C string (const char *) its argument
is provided to simplify the creation of the string that contains a native kernel code. Also,
if the last argument of nativeHandle does not look like code, the function interprets it as
a file name from which the actual code must be read.

4.3.4 Profiling

In order to profile HPL runs, both the library and the user code to profile must be compiled
with the HPL_PROFILE macro defined (i.e., using -DHPL_PROFILE). If you installed HPL
using the cmake-based approach explained in Section 2.1, you already have a version of

21

Type Field Meaning
double | secsKernelCreation time used in building the kernel code

double | secsKernelCompilation | time used in compiling the kernel
double | secsDataHostToDevice | time spent in the transfers from host to the device
double | secsDataDeviceToHost | time spent in the transfers from device to host

double | secsKernelExecution time spent in the execution of the kernel

Table 5: Fields of struct ProfilingData

| STAGE | TIME (s) I
| Kernels creation I 0.000340 |
| Kernels compilation]| 0.006370 |
| CPU->GPU I 0.020566 I
| GPU->CPU | 0.011292 |
| Kernels execution | 0.398723 |

Figure 10: Example HPL profiling output

the library compiled with profiling enabled called HPLprofile.a in the library directory.
If you followed the makefiles-based approach explained in Section 2.2, you must make sure
you build a version of the library with profiling mode enabled. This is achieved building
the library with the environment variable HPL_PROFILE defined (see Appendix A). This
environment variable also applies this macro in the compilation chain of the tests provided
with the library.

Important: It is inconsistent to compile a program without the HPL_PROFILE
flag with a HPL library compiled in profile mode, or to try to compile a
program in profile mode with a HPL library not built in profiling mode.
The results are undefined.

In profiling mode, HPL gathers five types of statistics that are stored in a struct of
type ProfilingData, whose fields are illustrated in Table 5 with their meaning. HPL
provides two host functions to access this profiling information:

e ProfilingData getProfile() returns a ProfilingData struct with the profiling
of the most recent kernel execution.

e ProfilingData getTotalProfile() returns a ProfilingData struct that summa-
rizes (adds) the profiling statistics of all the kernel runs performed.

In addition, applications compiled in profiling mode always generate when they finish
their execution a text file called HPL_PROFILER_QUTPUT.txt. This file contains a human
readable representation of the global statistics gathered for all the kernel runs with the
form shown in Fig. 10.

22

A Library compile time flags and environment
variables

The compilation definitions/macros that change the behavior of the library are:

e NDEBUG : removes assert macros
e DEBUG : enables additional messages, checks and debugging macros defined in HPL_utils.h

e HPL NO_AUTOSYNC : disables autodetection of read or write accesses through the oper-
ator() accesses to the HPL Arrays. The user can still express the usage of an Array
with a flag to method getData.

e HPL PROFILE : Compiles the library (and tests provided with it) in profiling mode.
See Section 4.3.4 for more details.

The environment variables that can be set to configure the compilation of the library
when using the makefiles-based mechanism described in Section 2.2 are:

e DEBUG : defines the DEBUG flag in the compilation of the library.

e PRODUCTION : defines NDEBUG and optimization flags such as 03. It also removes
debugging information.

e HPL PROFILE : defines the HPL_PROFILE flag in the compilation of the library and
tests.

Example: (assuming bash shell): DEBUG=1 make clean all

builds the HPL library in debug mode.

23

B

Runtime variables

These environment variables change the behavior of HPL at runtime :

HPL_CONFIG_FILE : location of the configuration file that allow to apply the runtime
optimizations detected by the PerfAdapt utility and stored in this file.

HPL _KERNEL FILE ENABLE : kernels generated are dumped to a file called HPL_kernels.

HPL_KERNEL_FINISH ENABLE : force to wait kernel completion.

HPL_OPT_COPY_OUT_DISABLE : disable to automatic data transfer optimization such
as copy out argument even the kernel did not change the argument.

HPL_PRINT_COPY : prints data transfer information (copy_in/copy_out) between de-
vice memory to host memory when it is occurring.

HPL_UNIFIEDMEMORY_ENABLE : This flag allows to share the same data pointer be-
tween the host and the OpenCL device. This flag should be activated always when
the OpenCL device is a CPU to avoid the memory copies between the host process
and the OpenCL device. The data pointer of the HPL arrays are already aligned to

4KB to take the maximum advantage of the pinned memory created by mean of the
CL_USE_HOST_PTR flag.

In addition, during the execution the following global variables control certain aspects
of the execution:

bool AutoManageExceptions: When true, which is the default, the library catches
eval exceptions and exits the program. When false, all the exceptions are thrown
to the user code.

24

cl.

C cIBLAS integration

HPL can be optionally compiled with support for cIBLAS by providing the directory where
cIBLAS is installed before compiling HPL. The integration provides two interface functions
for each cIBLAS operation: one simplified that only contains the most basic arguments,
and another one complete that includes all of them. The names of the functions follow the
pattern clblas + < data — type letter > + function_name, where the data-type letters

are
S : Single precision.

D : Double precision.

C : Complex in single precision.

D : Double in single precision.

For example, the interface provided to the single precision gemm operation are the

functions:

clblasStatus clblasSgemm(const HPL::Array<float, 2>& x,

const HPL::Array<float, 2>& y,
HPL: :Array<float, 2>& z,
const HPL::Device& d = HPL::Device());

clblasStatus clblasSgemm(clblasOrder order,

clblasTranspose transA,
clblasTranspose transB,

size_t M,

size_t N,

size_t K,

cl_float alpha,

const HPL::Array<float, 2>& A,
size_t offA,

size_t 1lda,

const HPL::Array<float, 2>& B,
size_t offB,

size_t 1db,

cl_float beta,

HPL: :Array<float, 2>& C,

size_t offC,

size_t 1ldc,

const HPL::Device& d = HPL: :Device(),
cl_uint numEventsInWaitList = O,
const cl_event * eventWaitList = O,
cl_event * events = 0);

25

In order to use the interface the programmer must ensure that:

1. The header file HPL_c1BLAS.h is included.

2. Function HPL_clblasSetup() is invoked before any cIBLAS call is performed.
3. Function HPL_clblasTeardown() should be called after cIBLAS is used.

The compilation of the application requires the cIBLAS header files and library in
addition to those of HPL, thus appropriate flags must be provided to specify all of them.

26

	Introduction
	Installation
	Installation based on cmake
	Installation based on Makefiles
	Basic test: compiling with HPL
	Environment setup for runtime optimizations

	Hardware and Programming Model
	Programming Interface
	Arrays
	Methods
	Host side Array usage optimization
	Arrays of structs
	AliasArrays

	Kernel interface
	HPL automatic variables
	Control flow macros
	Generic functions
	Arithmetic functions
	Atomic functions

	Host interface
	Device management
	Kernel execution
	Using native kernels
	Profiling

	Appendices
	Library compile time flags and environment variables
	Runtime variables
	clBLAS integration

